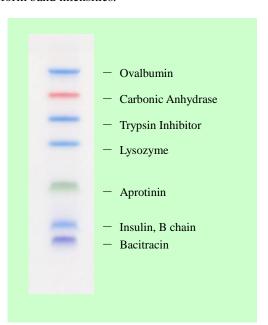


Product Name: DynaMarker® Protein MultiColor Stable, Low Range, Large

 Code No:
 DM670L

 Lot No:
 002CA04

Size: $200 \mu l \times 3 (DM670 \times 3)$ (120 mini-gel lanes)


Storage: 4 °C

Stability: 12 months at 4 °C

Storage Buffer: 50 mM Tris-HCl (pH6.8), Urea, SDS, Glycerol, EDTA

Description

DynaMarker® Protein MultiColor Stable, Low Range is a pre-stained protein molecular weight marker. The marker is supplied in gel loading buffer for direct loading onto SDS-PAGE without heating or adding reducing agents. It is easy to start electrophoresis since the marker can be stored and stable at 4 °C in a liquid state. The marker consists of seven prestained protein standards, Blue, Red, Green and Purple, ranging in appropriate molecular weight from 2 kDa to 46 kDa. The marker is suitable for monitoring gel electrophoresis and electrophoretic transfer onto membranes. The protein concentrations are optimized to give uniform band intensities.

Electrophoresis profile of ^{DynaMarker} Protein MultiColor Stable, Low Range (5 µl) on 16% polyacrylamide (3 % C) Gel / Tris-Tricine-SDS as running buffer.

Protocol

- 1. Take the marker out of refrigerator.
- 2. Load 5 µl for mini-gels or more for large size gels.
- 3. Load your samples.
- 4. Start electrophoresis.

Note: There is no need to heat or add reducing agents.

Contents

Protein	Color	Apparent molecular weight (kDa) *
Ovalbumin	Blue	46.3
Carbonic Anhydrase	Red	30.8
Trypsin Inhibitor	Blue	22.6
Lysozyme	Blue	17.0
Aprotinin	Green	8.7
Insline, B chain	Blue	3.9
Bacitracin	Purple	1.7

Note: As covalently bound dye affects protein mobility, each batch of our prestained protein marker is calibrated against unstained standards. A prestained protein marker should be used for approximate molecular weight determination. For precise molecular weight determination, you should use an unstained molecular weight marker.

Recommended usage

DynaMarker® Protein MultiColor Stable, Low Range is suitable for monitoring low molecular weight protein on polyacrylamide gel electrophoresis using Tris-Tricine-SDS as running buffer ⁽¹⁾, and for monitoring electrophoretic transfer.

One example is shown below:

• Detection of β-Amyloid (1-42)

- 1) Electrophoresis
- 1-1) Preparation of reagents (2)
- •Acrylamide-Bis stock solution (T:49.5%, C:3%)

Acrylamide	48 g
Bis-acrylamide	1.5 g
dH ₂ O	to 100 mL

- •3× Gel buffer
 - 3 M Tris-HCl (pH8.45), 0.3 % SDS
- •10× Anode buffer
 - 1.0 M Tris-HCl (pH8.9)
- •10×Cathode buffer
 - 1.0 M Tris, 1.0 M Tricine, 1.0 M SDS (pH adjustment is not necessary)

^{*:} The apparent molecular weight values are lot specific.

•4×Sample buffer

150 mM Tris-HCl (pH7.0), 12 % SDS, 6 % mercaptoethanol, 30 % Glycerol, 0.05 % CBB

1-2) Preparation of 16 % polyacrylamide (3 % C) Gel

Prepare the 16 % separating gel solution according to the following table and pour the gel solution into the mold of a vertical gel apparatus. The separating gel is overlaid with several drops of water and left until polymerized adequately, and then the overlaid water was replaced by a 4 % stacking gel.

	4 % stacking gel	16 % separating gel
Acrylamid-Bis stock solution	1 ml	10 ml
3× Gel buffer	3 ml	10 ml
Glycerol	_	2.4 ml
dH_2O	8 ml	7.6 ml
10 % APS	90 μl	100 μl
TEMED	9 μl	10 μl

1-3) Sample preparation

Prepare the protein sample according to the following table.

Protein sample	15 μl
4× Sample buffer	5 μl
	20 ul

Heat at 95°C for 5 min, and then put the tube on ice.

1-4) Electrophoresis of the protein samples and DynaMarker® Protein MultiColor Stable, Low Range.

Set the Polymerized acrylamide gel in the electrophoresis apparatus, then pour the $1\times$ Anode buffer and $1\times$ Cathode buffer. Load the protein sample and 5 μ l of ^{DynaMarker®} MultiColor Stable, Low Range into a well and run the gel at 100–200 V.

2) Transfer onto membrane

2-1) Preparation of reagents

- Transfer buffer (Towbin buffer)
 25 mM Tris, 192 mM Glycine, 20 % MeOH
- Nitrocellulose membrane (0.2 µm pore size).

Note: Transfer efficiency differs depending on the type of membranes and buffers, because the physical properties of small molecule proteins greatly vary depending on kinds of proteins.

2-2) Semi-dry transfer

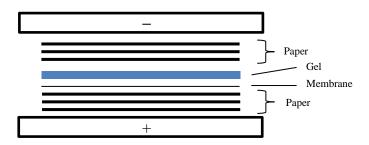


Figure 1, Semi-dry transfer

- 2-2-1) Prepare six sheets of blotting paper and a sheet of nitrocellulose membrane.
- 2-2-2) Soak the blotting paper and nitrocellulose membrane with transfer buffer for 10 min.
- 2-2-3) Place the three sheets of blotting paper on the anode platform of the transfer cell.
- 2-2-4) Place the membrane on top of the blotting paper.
- 2-2-5) Transfer the gel from the glass plate to the top of the membrane and press out any air bubbles.

 (*It is important to make sure that there are no air bubbles between the membrane and the gel.)
- 2-2-6) Place the other three sheets of blotting paper onto the gel and set the cathode assembly.
- 2-2-7) Transfer for 60 min at 2 mA/cm².
- 2-2-8) After ensuring the marker has transferred successfully onto the membrane, remove the membrane from apparatus.
- 2-2-9) Rinse the membrane in PBS buffer.

3) Detection

- 3-1) Boil the membrane for a few minutes (3 \sim 5 min.) in PBS buffer (3)
- 3-2) Block with TBS based protein free blocking agent (e.g. Pierce® Protein-Free T20 (TBS) Blocking Buffer*) for 1 hr
- 3-3) Wash 3 times for 5 min in TBS-T(0.05% Tween20)
- 3-4) Incubate with anti $\beta\textsc{-Amyloid}$ antibody (mouse monoclonal) overnight at 4 $^{\circ}\textsc{C}$
- 3-5) Wash 3 times for 5 min in TBS-T(0.05% Tween20)
- 3-6) Incubate with biotinylated anti mouse IgG antibody for 1 hr at room temperature.
- 3-7) Wash 3 times for 5 min in TBS-T(0.05% Tween20)
- 3-8) Incubate with VECTASTAIN Elite ABC Standard kit**
 (Please refer to the manual.)
- 3-9) Wash 3 times for 5 min in TBS-T(0.05% Tween20)
- 3-10) Stain with DAB Peroxidase substrate kit***.

(Please refer to the manual.)

^{*:} Pierce® Protein-Free T20 (TBS) Blocking Buffer is a product of Thermo Fisher scientific, Inc.

^{**:} VECTASTAIN Elite ABC Standard kit is a product of Vector laboratories, Inc.

***: DAB peroxidase substrate kit is a product of Vector laboratories, Inc.

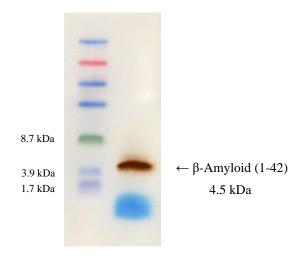


Figure 2, Detection of β -Amyloid (1-42)

Reference

- (1) Hermann schägger and Gebhard Von Jagow. Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. *Anal. Biochem.* 166, 368-379 (1987).
- (2) Hermann schägger. Tricine-SDS-PAGE. Nature Protocols. 1, 16-22 (2006)
- (3) Nobuo Ida, *et.al*. Analysis of Heterogeneous βA4 Peptide in Human Cerebrospinal Fluid and Blood by a Newly Developed Sensitive Western Blot Assay. *J. Biol. Chem.* 271, 22908-22914 (1996)